240 research outputs found

    Aktueller Malariaschutz bei Kurzzeitaufenthalt

    Get PDF
    Zusammenfassung: In Deutschland werden jährlich ca. 800Malariafälle gemeldet. Für ca.1% der nicht immunen Reisenden endet die Krankheit tödlich. Um diese Situation zu verbessern, ist die Information durch die beratenden Ärzte entscheidend: das Risikobewusstsein der Reisenden vor, während und nach einer Reise in endemische Gebiete muss geschärft werden. Ein konsequenter Mückenschutz vermindert das Infektionsrisiko der Malaria sowie anderer durch Arthropoden übertragener Krankheiten zusätzlich. Die regelmäßige Einnahme von Medikamenten zur Malariachemoprophylaxe in Hochrisikogebieten sowie das rasche Handeln im Falle von Fieber in Gebieten mit mäßigem oder kleinem Malariarisiko (Aufsuchen eines Arztes zur Diagnosestellung, notfalls Selbsttherapie) tragen wesentlich zur Reduktion schwerer Malariaerkrankungen be

    Influence of the ultrasonic vibration amplitude on the melt pool dynamics and the weld shape of laser beam welded EN AW-6082 utilizing a new excitation system for laser beam welding

    Get PDF
    Laser beam welding is a commonly used technology for joining similar and dissimilar materials. In order to improve the mechanical properties of the weld, the introduction of ultrasonic vibration into the weld zone has been proposed [5]. The ultrasonic system consists of an electronic control, a power supply, a piezoelectric converter and a sonotrode, which introduces the vibration into the weld zone. Its proper design is of great importance for the process performance. Furthermore, the effects of ultrasound in a melt pool need to be understood to evaluate and optimize the process parameters. In addition, it is important to find out the limits of ultrasonic excitation with respect to a maximum vibration amplitude. Therefore, firstly different methods of ultrasonic excitation are investigated and compared with respect to their performance. A system which is based on using longitudinal vibrations turns out to be the best alternative. Secondly, the system design is described in detail to understand the boundary conditions of the excitation and finally, simulations about the influence of ultrasonic vibrations are done by using a simplified model. The system is used to perform experiments, which aim at detecting the maximum vibration amplitude doing bead on plate welds of EN AW-6082 aluminum alloy. The experiments reveal a significant change of the weld shape with increasing ultrasonic amplitude, which matches the simulative findings. If the amplitudes are small, there is a marginal effect on the weld shape. If the amplitudes are high, melt is ejected and the weld shape is disturbed. In the present case, amplitudes over 4 µm were found to disturb the weld shape. © 2021, The Author(s)

    Mulsemedia: State of the art, perspectives, and challenges

    Get PDF
    Mulsemedia-multiple sensorial media-captures a wide variety of research efforts and applications. This article presents a historic perspective on mulsemedia work and reviews current developments in the area. These take place across the traditional multimedia spectrum-from virtual reality applications to computer games-as well as efforts in the arts, gastronomy, and therapy, to mention a few. We also describe standardization efforts, via the MPEG-V standard, and identify future developments and exciting challenges the community needs to overcome

    Salience-based selection: attentional capture by distractors less salient than the target

    Get PDF
    Current accounts of attentional capture predict the most salient stimulus to be invariably selected first. However, existing salience and visual search models assume noise in the map computation or selection process. Consequently, they predict the first selection to be stochastically dependent on salience, implying that attention could even be captured first by the second most salient (instead of the most salient) stimulus in the field. Yet, capture by less salient distractors has not been reported and salience-based selection accounts claim that the distractor has to be more salient in order to capture attention. We tested this prediction using an empirical and modeling approach of the visual search distractor paradigm. For the empirical part, we manipulated salience of target and distractor parametrically and measured reaction time interference when a distractor was present compared to absent. Reaction time interference was strongly correlated with distractor salience relative to the target. Moreover, even distractors less salient than the target captured attention, as measured by reaction time interference and oculomotor capture. In the modeling part, we simulated first selection in the distractor paradigm using behavioral measures of salience and considering the time course of selection including noise. We were able to replicate the result pattern we obtained in the empirical part. We conclude that each salience value follows a specific selection time distribution and attentional capture occurs when the selection time distributions of target and distractor overlap. Hence, selection is stochastic in nature and attentional capture occurs with a certain probability depending on relative salience

    Visual saliency and semantic incongruency influence eye movements when inspecting pictures

    Get PDF
    Models of low-level saliency predict that when we first look at a photograph our first few eye movements should be made towards visually conspicuous objects. Two experiments investigated this prediction by recording eye fixations while viewers inspected pictures of room interiors that contained objects with known saliency characteristics. Highly salient objects did attract fixations earlier than less conspicuous objects, but only in a task requiring general encoding of the whole picture. When participants were required to detect the presence of a small target, then the visual saliency of nontarget objects did not influence fixations. These results support modifications of the model that take the cognitive override of saliency into account by allowing task demands to reduce the saliency weights of task-irrelevant objects. The pictures sometimes contained incongruent objects that were taken from other rooms. These objects were used to test the hypothesis that previous reports of the early fixation of congruent objects have not been consistent because the effect depends upon the visual conspicuity of the incongruent object. There was an effect of incongruency in both experiments, with earlier fixation of objects that violated the gist of the scene, but the effect was only apparent for inconspicuous objects, which argues against the hypothesis

    Predicted contextual modulation varies with distance from pinwheel centers in the orientation preference map

    Get PDF
    In the primary visual cortex (V1) of some mammals, columns of neurons with the full range of orientation preferences converge at the center of a pinwheel-like arrangement, the ‘pinwheel center' (PWC). Because a neuron receives abundant inputs from nearby neurons, the neuron's position on the cortical map likely has a significant impact on its responses to the layout of orientations inside and outside its classical receptive field (CRF). To understand the positional specificity of responses, we constructed a computational model based on orientation preference maps in monkey V1 and hypothetical neuronal connections. The model simulations showed that neurons near PWCs displayed weaker but detectable orientation selectivity within their CRFs, and strongly reduced contextual modulation from extra-CRF stimuli, than neurons distant from PWCs. We suggest that neurons near PWCs robustly extract local orientation within their CRF embedded in visual scenes, and that contextual information is processed in regions distant from PWCs

    The Time Course of Segmentation and Cue-Selectivity in the Human Visual Cortex

    Get PDF
    Texture discontinuities are a fundamental cue by which the visual system segments objects from their background. The neural mechanisms supporting texture-based segmentation are therefore critical to visual perception and cognition. In the present experiment we employ an EEG source-imaging approach in order to study the time course of texture-based segmentation in the human brain. Visual Evoked Potentials were recorded to four types of stimuli in which periodic temporal modulation of a central 3° figure region could either support figure-ground segmentation, or have identical local texture modulations but not produce changes in global image segmentation. The image discontinuities were defined either by orientation or phase differences across image regions. Evoked responses to these four stimuli were analyzed both at the scalp and on the cortical surface in retinotopic and functional regions-of-interest (ROIs) defined separately using fMRI on a subject-by-subject basis. Texture segmentation (tsVEP: segmenting versus non-segmenting) and cue-specific (csVEP: orientation versus phase) responses exhibited distinctive patterns of activity. Alternations between uniform and segmented images produced highly asymmetric responses that were larger after transitions from the uniform to the segmented state. Texture modulations that signaled the appearance of a figure evoked a pattern of increased activity starting at ∼143 ms that was larger in V1 and LOC ROIs, relative to identical modulations that didn't signal figure-ground segmentation. This segmentation-related activity occurred after an initial response phase that did not depend on the global segmentation structure of the image. The two cue types evoked similar tsVEPs up to 230 ms when they differed in the V4 and LOC ROIs. The evolution of the response proceeded largely in the feed-forward direction, with only weak evidence for feedback-related activity

    Development of Bacterial Biofilms on Artificial Corals in Comparison to Surface-Associated Microbes of Hard Corals

    Get PDF
    Numerous studies have demonstrated the differences in bacterial communities associated with corals versus those in their surrounding environment. However, these environmental samples often represent vastly different microbial micro-environments with few studies having looked at the settlement and growth of bacteria on surfaces similar to corals. As a result, it is difficult to determine which bacteria are associated specifically with coral tissue surfaces. In this study, early stages of passive settlement from the water column to artificial coral surfaces (formation of a biofilm) were assessed. Changes in bacterial diversity (16S rRNA gene), were studied on artificially created resin nubbins that were modelled from the skeleton of the reef building coral Acropora muricata. These models were dip-coated in sterile agar, mounted in situ on the reef and followed over time to monitor bacterial community succession. The bacterial community forming the biofilms remained significantly different (R = 0.864 p<0.05) from that of the water column and from the surface mucus layer (SML) of the coral at all times from 30 min to 96 h. The water column was dominated by members of the α-proteobacteria, the developed community on the biofilms dominated by γ-proteobacteria, whereas that within the SML was composed of a more diverse array of groups. Bacterial communities present within the SML do not appear to arise from passive settlement from the water column, but instead appear to have become established through a selection process. This selection process was shown to be dependent on some aspects of the physico-chemical structure of the settlement surface, since agar-coated slides showed distinct communities to coral-shaped surfaces. However, no significant differences were found between different surface coatings, including plain agar and agar enhanced with coral mucus exudates. Therefore future work should consider physico-chemical surface properties as factors governing change in microbial diversity
    • …
    corecore